N-(Difluoroamino)azoles – a new class of N-substituted azoles

Igor L. Dalinger, Vasilii M. Vinogradov, Svyatoslav A. Shevelev* and Vladimir S. Kuz'min

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow, Russian Federation. Fax: +7 095 135 5328

N-(Difluoroamino)azoles — a new class of N-substituted azoles — have been synthesized by reacting NH-azoles, whose NH-acidity is $pK_a < 5$, with O-fluorosulfonyl-N, N-difluorohydroxylamine in the presence of bases.

We have shown previously that reactions of O-fluorosulfonyl-N,N-difluorohydroxylamine (FH) with anions of NH-azoles occurs through replacement at the sulfur atom of the sulfonyl group in FH to give the corresponding N-fluorosulfonylazoles (Scheme 1).

Scheme 1

On the other hand, it is known, as exemplified by the interaction of Cl^- and F^- anions with FH in acetonitrile, that FH is an ambident electrophile: the less-basic Cl^- ions react at the nitrogen atom of the NF_2 group to give $ClNF_2$ whereas the much more basic F^- ions react at the sulfur atom of the SO_2F group to give SO_2F_2 .

These results suggested that decreasing the basicity of azolate anions by introducing electron-withdrawing moieties may result in structures capable of substitution at the nitrogen atom of the NF₂ group, *i.e.* N-difluoroamination of such anions would occur.

N-Unsubstituted azoles which, as we reported previously, react with FH to yield the corresponding N-fluorosulfonylazoles, have $pK_a > 6$. In the case of 3,4-dinitropyrazole (pK_a 5.48) and 3-nitro-1,2,4-triazole (pK_a 5.98), no N-substituted products were detected. In the present work we have found that a further decrease in the basicity of azolate anions (the pK_a values of the corresponding NH-azoles are less than 5) results in the realization of a fundamentally different direction of the reaction: the attack of the azolate anion occurs at the nitrogen atom of the NF₂ group in FH to give N-substituted azoles of a hitherto unknown class — N-(difluoroamino)-azoles. This reaction pathway was observed over a broad range of NH-azoles, such as pyrazoles, imidazoles and 1,2,4-triazoles with $pK_a < 5$ (Scheme 2,† Table 1). This reaction is not accompanied by formation of N-fluorosulfonylazoles.

N-Difluoroamination of azoles was carried out under phase-transfer catalysis conditions by the procedure reported in ref. 1, but NaHCO₃ was used instead of NaOH. Quaternary ammonium salts or cyclic and acyclic polyethers can be used as phase-transfer catalysts. The best results were obtained using acyclic polyether PEG-400.

The compounds obtained are thermally unstable and normally decompose at temperatures below $100-120\,^{\circ}\text{C.}^{\dagger}$ Caution! *N*-(difluoroamino)azoles are **highly sensitive to mechanical impact**.

Despite these properties, each of the *N*-(difluoroamino)-azoles 1–3, 6–9 and 11 were individually isolated and fully characterised (see below).

However, compounds 4, 5, 10 and 12 could not be isolated

Scheme 2

due to their exceedingly high lability. Their formation was confirmed and their yields were determined by $^{19}\mathrm{F}$ NMR spectroscopy of the organic phase (dichloroethane). It should be noted that anions of 'superacidic' NH-azoles (p $K_{\mathrm{a}}<0$), such as 2,4,5-trinitroimidazole or 3,5-dinitro-1,2,4-triazole, do not react with FH.

 $^{^\}dagger$ Mp for: 1, 70 °C (from CCl₄); 2, 62 °C (from CCl₄); 3, 127 °C (decomp., from MeNO₂); 6, 78 °C (decomp., oil); 7, 84 °C (decomp., from CHCl₃); 8, 100 °C (decomp., from CHCl₃); 9, 52 °C (from CCl₄); 11, 123 °C (decomp.).

Table 1

Compound	$pK_{a(H_2O)}$ of the starting azole	Yield (%)	NMR ^a ([² H ₆]acetone)		
			1H (δ_{TMS})	19 F (δ_{CFCl_3})	$^{13}\mathrm{C}~(\delta_{\mathrm{TMS}})$
1 ^b	2.85 (ref. 3)	38	8.79 (s, H-5)	99.51 s	137.58 (d, C-2, ${}^{3}J_{C-H} = 8.2$), 142.87 (d, C-4, ${}^{2}J_{C-H} = 2.6$), 115.11 (dt, C-5, ${}^{1}J_{C-H} = 213.2$, ${}^{3}J_{C-F} = 4.9$)
2 ^c	3.39 (ref. 6)	13	8.29 (t, H-2, ${}^{4}J_{H-F} = 1.1$)	100.46 s	129.54 (dt, C-2, ${}^{1}J_{C-H} = 233.9$, ${}^{3}J_{C-F} = 5.0$), 138.37 (d, C-4, ${}^{3}J_{C-H} = 13.8$), 128.37 (s, C-5)
3	3.50^d	80	9.39 s	101.11 s	150.34 (s, C-3), 121.0 (s, C-4), 142.4 (s, C-5), 108.47 (s, C-1'), 125.94 (dd, C-3', $^{1}J_{C-H} = 181.5$, $^{3}J_{C-H} = 7.0$), 150.42 (s, C-4'), 152.55 (s, C-2')
4	3.14 (ref. 3)	55	7.79 (t, ${}^5J_{\text{H-F}} = 5.0$)	112.10 s	153.28 (t, C-3, ${}^{4}J_{C-F} = 1.7$), 103.80 (d, C-4, ${}^{1}J_{C-H} = 199.8$), 144.24 (td, C-5, ${}^{3}J_{C-F} = 1.8$, ${}^{2}J_{C-H} = 3.3$)
5	2.92^{d}	5		109.87 s	
6	4^e	15		110.96 s	107.01 s, 123.18 s
7	$1.79,^d 3.40^d$	11		109.1 s	150.45 (s, C-3), 102.32 (t, C-4, ${}^{4}J_{C-F} = 2.1$), 141.43 (s, C-5)
8	1.80, ^d 4.70 ^d	22		107.35 d (F _A), 111.46 d (F _B), $(^2J_{A-B} = 500)$	148.10 (s, C-3), 128.03 (t, C-4, ${}^{4}J_{C-F} = 1.5$), 122.20 (s, C-5)
9	3.55 (ref. 3)	22	4.31 s (Me)	110.2 s	160.10 (s, C-3), 145.65 (s, C-5), 55.0 (q, Me, ${}^{1}J_{\text{C-H}} = 150.3$), 153.86 (q, CO, ${}^{2}J_{\text{C-H}} = 4.2$)
10	3^e	50	110.59 s		
11	2 ^e	32	2.46 s (Me), 5.74 s (CH ₂)	110.81 s	160.29 (s, C-3), 141.41 (t, C-5, ${}^{3}J_{\text{C-CH}_{2}} = 2.7$), 162.05 (s, C-3), 143.14 (s, C-5), 27.19 (q, Me, ${}^{1}J_{\text{C-H}} = 129.0$), 61.86 (t, CH ₂ , ${}^{1}J_{\text{C-H}} = 145.3$), 197.69 (qt, CO, ${}^{2}J_{\text{C-Me}} = 5.0$, ${}^{2}J_{\text{C-CH}_{1}} = 4.2$)
12	3^e	2		111.69 s	2 222

 $^{^{}a}$ 1 H and 19 F NMR shifts were recorded on a Bruker WM-250 instrument (250 MHz). 13 C and 15 N NMR shifts were recorded on a Bruker AM-300 instrument (300 MHz). b In CDCl₃, 15 N NMR (δ_{MeNO_2}): -36.67 (s, 2-NO₂), -25.68 (s, 4-NO₂), -127.55 (s, N-3), -62.50 (t, NF₂, 1 J_{N-F} = 168). c In CDCl₃, 15 N NMR (δ_{MeNO_2}): -32.41 (s, 4-NO₂), -42.95 (s, 5-NO₂), -127.92 (d, N-3, 2 J_{N-F} = 12.6), -69.07 (t, NF₂, 1 J_{N-F} = 166). d These data were determined using a spectrometric method with an accuracy of ± 0.02 pK_a units, by us in accordance with ref. 7. c Estimated.

The structures of N-(difluoroamino)azoles were confirmed by 1 H, 19 F, 13 C, 14 N and 15 N NMR (Table 1) and by IR spectroscopy as well as elemental analysis data.

In all cases, the reaction occurs regiospecifically to give only one isomer. In the case of asymmetric NH-azoles, difluoro-amination involves the nitrogen atom in the ring most distant from the most electron-withdrawing group.

The signals with chemical shifts (δ_{CFCl_3}) +99 to +111 ppm in the ¹⁹F NMR spectra of *N*-(difluoroamino)azoles correspond to the N–NF₂ group. It should be noted that the ¹⁹F NMR spectrum of compound **8** contains two doublets with ²*J* = 500 Hz rather than a singlet as in the spectra of the remaining compounds, which suggests the magnetic nonequivalence of the fluorine atoms in the NF₂ group. The presence and mutual arrangement of the difluoroamine and nitro groups in *N*-(difluoroamino)azoles was confirmed by ¹³C-{¹H, ¹⁴N} triple heteronuclear resonance (Table 1). The NF₂ group manifests itself in ¹⁵N NMR spectra as a triplet with chemical shifts ranging from -62 to -69 ppm and ¹*J*_{N-F} coupling constants from 166 to 168 Hz.

In addition to the absorption bands of NO₂, CH and CO (where present), the IR spectra of N-(difluoroamino)azoles contain a band in the region 860–890 cm⁻¹, typical of the N–F bond.

The structure of compound **8** was reliably confirmed by X-ray diffraction analysis (Figure 1).[‡]

The bis-pyrazole frame of the molecule is nonplanar. The

bilateral angle between the pyrazole rings is 60.6°, which suggests the absence of conjugation between them (the C-4-C-42 bond length is 1.460 A). The significant rotation of the rings around the C-4-C-42 bond can result from steric contacts between the substituents, namely NO₂ and NF₂. In fact, the intramolecular nonvalent distances N-13···N-132 (3.121 Å) and N-15···O-152 (2.875 Å) differ insignificantly from the corresponding sums of the van der Waals radii (3.00 and 2.90 A, respectively). The nitro groups at adjacent carbon atoms, C-1 and C-5, are rotated 19 and 36° relative to the ring plane, the O-115···O-211 distance being 2.820 Å. In the other half of the molecule, the nitro groups at the C-12 and C-52 atoms are rotated 86 and 12°, respectively, around the N_{nitro} - C_{ring} bonds, and the N-12···O-252 distance is 2.876 Å. The bond lengths and bond angles in the molecules are close to the standard values; the C_{ring} - N_{nitro} bond lengths lie within 1.44–1.49 Å. The N-F and N_{ring} - $N_{difluoroamine}$ bond lengths in the difluoroamine groups are, on average, 1.367 and 1.410 Å, respectively, and the FNF and NNF bond angles are 101.5 and 104.2° (average values). The crystal structure was found to contain no shortened intramolecular contacts; the packing coefficient is 0.647 (van der Waals radii according to Polling⁴).

The rigid molecular construction, which is also maintained when the compound is dissolved, explains the presence of signals relating to two magnetically non-equivalent fluorine

all geometric calculations were performed using the SHELX program package. The final *R*-factor was 0.074 for 1147 independent reflections of the 1496 reflections recorded overall. The atomic coordinates, bond lengths and bond angles are deposited at the Cambridge Crystallographic Data Centre (see Notice to Authors, *Mendeleev Commun.*, 1996, issue 1).

 $^{^{\}ddagger}$ Syntex-P2₁ diffractometer, λMo, graphite monochromator, $\theta/2\theta$ -scanning, $2\theta<60^{\circ}$. The crystals of **8** are rhombic, a=8.092(2), b=8.322(2), c=21.339(5) Å, $V_{\rm cell}=1437.0(7)$ Å³, $d_{\rm calc}=1.923$ g cm⁻³, Z=4, space group $P2_12_12_1$. Structure solving, determination of the positions and anisotropic thermal parameters of the atoms and

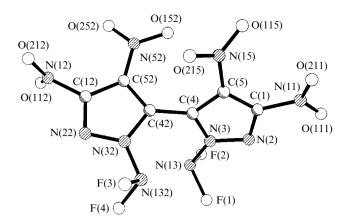


Figure 1 Structure of compound 8.

atoms in the ¹⁹F NMR spectra due to hindered rotation of the NF₂ group around the N-N bond.

Data obtained in the present work as well as those reported previously confirm the ambident behaviour of FH as an electrophile, this being shown for the first time for an organic anion.

It should be noted that compounds containing an N-NF₂ moiety are very rare: apart from the N-(difluoroamino)azoles

synthesized by us, we could find in the literature only one type of compound with this moiety, namely R_fNFN(CF₃)NF₂ $(R_f = CF_3, C_2F_5)$ obtained by the addition of N_2F_4 to R_fN=NCF₃ under UV irradiation.⁵

References

- 1 S. A. Shevelev, V. M. Vinogradov, I. L. Dalinger, B. I. Ugrak and V. I. Filippov, Mendeleev Commun., 1993, 14.
- J. K. Ruff, Inorg. Chem., 1965, 4, 1788.
- J. Catalan, J. L. M. Abboud and J. Elguero, Adv. Heterocycl. Chem., 1987, 41, 187.
- L. Polling, Priroda khimicheskoi svyazi (Nature of the chemical bond), Goskhimizdat, Moscow, 1947 (in Russian).
- G. N. Sausen, *J. Org. Chem.*, 1968, **33**, 2336. L. V. Epishina, V. I. Slovetskii, O. V. Lebedev, L. I. Filippova, L. I. Khmelnitsky, V. V. Sevostianova and T. S. Novikova, geterotsiklicheskikh soedinenii. Azotsoderzhashchie geterotsikly (Chemistry of heterocyclic compounds. Nitrogen-containing heterocycles), Zinatne, Riga, 1967, p. 102 (in Russian).
- A. Albert and E. Seargeant, Konstanty ionizatsii kislot i osnovanii (Ionization constants of acids and bases), Khimiya, Moscow, 1964 (in Russian).

Received: Moscow, 3rd July 1995 Cambridge, 9th October 1995; Com. 5/04611D